The issue of drinking water quality is recently raised due to the fact that water consumers did not give rise to doubt its quality within long historical period. Society carefully maintained the existing water supplies by keeping the rules of water well site selection in the meadows with limited human activity and away from yards. Communities maintained cleanliness and utilization standards of the area around water wells. Today, the complete water supply of the Ukrainian population is complicated due to low quality of water and water bodies [1, 2].

Treatment of natural drinking water sources has become one of the focal problems in XXI century. The World Health Organization reports less than 1% of water supply sources available without additional purification. The main polluting factors are high concentration of the following elements:
- iron;
- manganese;
- hydrogen sulfide;
- organic matter.
Drinking water supply is the most urgent issue in countryside, because of water wells, containing highly contaminated water [3–5]. According to the 2874-82 State standard [6] the iron content for drinking water should not exceed 0.3 mg/dm³. However, in most cases, the underground water iron ratio exceeds the permissible concentration. For example, about 82% of Zhytomyr region’s wells contain subsoil water, exceeding iron permissible standard (0.4–3.23 mg/dm³). The reason for this may be relatively high corrosivity of the subsoil water. Sod-podzol soils of Radomyshl and Chervonoarmiysk districts have acid reaction because of iron compounds. This requires liming to improve conditions of crops cultivation. When water — bearing horizons are fed by rivers and swamps, such waters contain iron in the form of compound with organic substances (e.g. Yemilchine district (20 rivers, swamps), Radomyshl district (15 rivers, swamps), and Baranivska district (17 rivers)). Meantime, the subsoil waters are acid in the ore and core mineral areas, such as Volodarsk-Volymskyy and Korosten districts, and this is the evidence of iron migration. Minor concentrations of iron in the subsoil waters of Chervonoarmiysk and Chernyakhiv regions can be explained by its more alkaline condition, widespread presence of oxygen in the waters and good aeration of strata lying above the subsoil water level [7].

MATERIALS AND RESEARCH METHODS

Natural waters contain various forms and content of iron. Therefore, it was necessary to develop a number of water deironing technologies. Available deironing technologies include the following methods:

- Reagent;
- Reagentless;
- Cation — exchange;
- Biochemical.

The surface water deironing is performed using reagent methods, while non-reagent methods are most commonly used for subsoil waters [8–13].

Currently, there is no single and flexible method for subsoil waters deironing. Each of these methods is used in certain cases and has its advantages and disadvantages.

RESULTS AND DISCUSSION

One of the most accessible and effective water deironing methods used in the modern water treatment systems is the water aeration based technology. The water aeration technology is based on the ability of iron and dis-
solved oxygen containing water (II) to separate iron on grains surface, creating catalytic layer of the bivalent and trivalent iron oxide ions when filtering through the grains layer.

The main objective during water treatment is determination of the workflow rational parameters. The modelling water with iron content of 4.5 mg/dm³ was prepared to study the deironing kinetics. It is generally known that the water aeration process can continue for a long time. During experimentation, the air volume discharge rate was varied to speed up the process. The intensity of bubbling was regulated using replaceable micro air pumps, having air flow rates of 1.0 dm³/min, 1.25, 1.5, 1.75, 2.0 and 2.5 dm³/min. Fig. 1 illustrates the dependence of iron content on the intensity of bubbling (Fig. 1).

The diagram shows that the more intensive is air supply the better is deironing process. Water bubbling was carried out within 30 minutes, varying air supply intensity. Water sampling and iron determination were performed every 5 minutes. Iron content variation in subsoil water is illustrated on fig. 2. This diagram shows the sanity standard after 20 minutes with air injection intensity of 2.5 dm³/min.

![Figure 1](image1.png)

Figure 1. Dependence of iron content in purified water on the intensity of bubbling

![Figure 2](image2.png)

Figure 2. Dependence of iron content in purified water on the duration of aeration
The second part of the experiment studies the subsoil water deironing process, when water is filtered through a layer of granular material. The quartz sand was used as the granular charge with the grain size of 0.5 mm. Water detention time in the test vessel was 60 minutes. Filtering medium, intended for filter loading, should have necessary porosity, sufficient mechanical resistance against abrasion and chemical stability against water soluble action. As the sand meets all these requirements, it was cleaned and thoroughly washed to be used as the granular load. The depth of granular material layer was varied within 5–20 cm (Fig. 3).

It is generally known that grains size tightly related to filtration effectiveness. Therefore, apart from the depth of the sand layer, the grains size of filtering load was also varied. The sand fraction varied within the following ranges: 0.5–1.0 mm; 1.0–1.5 mm; 1.5–2.0 mm; 2.0–2.5 mm and 2.5–3.0 mm. Gradual decrease of iron concentration in the tested water from 4.5 mg/dm3 to 0.23 mg/dm3 was noted within relatively short time interval (Fig. 4) after increasing the depth of granular material layer.

Figure 3. Dependence of iron content in purified water on the height of the granular material in the filter

Figure 4. Dependence of iron content in purified water on the size of sand fractions
material layer. Due to formation of catalytic film of iron oxides on the surface of grains, the content of iron was very close to «0» and this can be seen on fig. 5 (dependence of iron concentration on duration of aeration).

CONCLUSION

It was determined that within the range of specified parameters, such as duration and intensity of aeration, layer depth and filtration load granules size, the process water aeration and filtration decreases iron compound to 0.15 mg/dm3, provided that:

- bubbling duration is 5–30 min;
- oxygen supply intensity varies between 1.0 to 2.5 dm3/min, and complies the sanity standards, allowing its household use.

Based on the results of studies, the following deironing optimal parameters can be recommended:

- air bubbling rate 25 dm3/min;
- duration of aeration — 20 min;
- fractional composition of the sand — 2.5–3 mm;
- fractional composition of sand — 2.5–3 mm;
- height of the sand layer — from 5 to 20 cm.

ЛІТЕРАТУРА

10. Фізико-хімічні методи очистки води. Управління водними ресурсами / [І. Астрелін, ...]
REFERENCES

