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! Vowceopodcviuii nayionanvruii ynicepcumem
2 [pawiscokuil ynigepcumem, Caoeauuuna
3 Incmumym azpoexonoeii i npupodoxopucmyeanus HAAH

Bidomo, wo 3a6pyoHenHs aepoekocucmem aHMUOIOMUKAMU € AKMYAAbHOK NPOOAEMOK)
cb0200eHHs. Bnaue 3a6pyonenns anmubiomuxamu Ha HABKOAUWHE NPUPOOHe cepedosuuie,
300p08° NOUHU | MBAPUH € MAN0 8UBUeHUM. AHmubiomuKkuy 6idieparoms KA108Y pob y
60pomv0i 3 IHEeKYIUHUMU 3aX80PHOSAHHAMU Y NH00CUH, MEAPUH MA AKEAKYAbMYPI 8 YCbOMY
ceimi. Hadxooxcenns dedani b6inbuioi Kinbkocmi aHmubiomuxie y 600u ma rpyHmu 3yM0oGAHE
NnoMeHyitiny 3aepo3y 04s 6CIX MIKPOOpeaHizmie y yux cepedosuu,ax. 3abpyoHeHHs HABKO-
AUUHBO20 NPUPOOHO20 cepedosuua aHmubiomuKamu € 00HUM i3 YUHHUKIG, W0 8U3HAYAIOMb
topmysanns bakmepianrvHoi pezucmenmuocmi. DmopxiHoAoHU — 00UH 3 HAUOIALIW PO3NO-
6croddceHux Kaacie anmubiomuxie. Enpoghnokcayun nasexncums 0o Kaacy anmubiomuxie
(hMOopXiHOAOHY, AKULL IHIMEHCUBHO BUKOPUCOBYHOMY 0415 NIKY8AHHS 6aKkmepianrbHux iHpeKyili
y eemepuHapii. Y HABKOAUWHbOMY NPUPOOHOMY cepedoguuli enpodaokcayut niodaemocs
deepadauii 3a pizHUX YMO8, Y M.4. WAAXOM (homoaizy, Oiodeecpadayii ma oKuUCAeHHs MiHe-
ParvHUMu okcudamu, ane 8in He € uymaueum 0o eidpoaizy. Heseaxcarouu Ha yi mexauizmu
deepadauii, wac HanieposkAady eHpopPAOKCAYUHY 8 HABKOAUUHBOMY NPUPOOHOMY cepedosuuyi
€ 0060ai dogeum. byro oyineno eénaue enpogpaokcayuny Ha aKkmugHicmos ma cCmpyKmypy
MiKpobiomy rpynmy. Y modeasnux exocucmemax 3 pi3HoK KOHUEHMPAUie0 eHpopaoKcayuny
Kyabmueyeanu: Lactuca sativa var. crispa, Anethum graveolens, Thymus serpillum, Mentha
piperita, Calendula officinalis. HailakmueHiwe enporokcayun iz rpyHmy noeaunanu cinb-
cbKo2ocnooapeski pocaunu, sk-om: Lactuca sativa var. crispa ma Calendula officinalis. Ipynm
3 BUCOKOI0 KOHUEHMPAYIEI0 aHmMUubiomuka xapaKkmepu3ysagcs HU3bKUM YMIiCIOM MiKpoopea-
Hi3Mi8, wo Qikcyroms azom, i 3HAYHOK KiAbKICMIO 04ie0mpo@Hoi ma cnopoymeoprearbHoi
mikpobiomu. 3abpyonenns anmubiomukamu makodic € 8aNCAUBUM YUHHUKOM QOPMYBAHHS
PEe3UCMOMY T pYHMY — CYKYNHOCMI TPYHMOGUX MIKPOOP2AHI3MI8 i3 8UCOKUM piéHeM cmili-
Kocmi do anmubiomuxie. 3 rpynmy moodeavHux azpoexocucmem 6yno eudireno 37 cmiikux
do aumubiomukie 6axmepianvuux izonamie. Bcmanoeneno, wjo éci izonamu € cmiikumu 00
anmubakmepianbHux npenapamis, 3 akux nonad 64% Oyau pezucmenmuumu 0o 12 anmu-
biomuxkie (mailyce 6cix Kaacie). B excnepumenmi 6y10 eudineno n’ame bakmepiil, cmilikux
do ecix mecmosanux anmubiomukie — anaepobni 6axmepii: Clostridium difficile, Clostridium
perfringens ma aepobni bakmepii: Enterococcus faecalis, Yersinia enterocolitica, Enterobacter
cloacae. Yci 6onu € cmiiikumu 0o aHmubiomuxia, a maxoxic 30y0HUKamu iHeKuitinux xeopoo,
Wo CRPUYMUHAIOMY 3aepo3y 0458 300p08°s AH0uHU. 3a0pyOHeHHs TPYHMY aHmubiomukamu
CHPUMUHAE He2aMUBHI 3MIHU Y MIKPOOHUX YePYNOBAHHAX | € OOHUM i3 8ANCAUBUX YUHHUKIG
@opmyeanHs pe3ucmomy rpyHmy.
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Global use of antibiotics increased steadi-
ly over the past decades, both due to an aug-
mentation of antibiotic use in human medicine

© L. Symochko, R. Mariychuk, O. Demyanyuk,
V. Symochko, 2019

and in other sectors of commercial activity
[1]. For example, antibiotic consumption in
livestock reached 63.151 tons in 2010 and
is predicted to increase by another 67% by
2030. Antibiotic use is also rising in aquacul-
ture, the fastest-growing food sector world-
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wide due to intensive farming [2, 3]. For this
reason, antibiotics of pharmaceutical orig-
in are now found in large quantities in hu-
man-made environments such as sewage and
waste water treatment plants [4]. Moreover,
because antibiotic pollution is poorly regu-
lated on a local and global scale, antibiotic
molecules are increasingly found in terrest-
rial, freshwater, and marine environments [5]
The fluoroquinolones are one of the most used
classes of antibiotics. Enrofloxacin belongs to
the class of fluoroquinolone antibiotics that
have been intensively used for the treatment
of bacterial infections in veterinary medicine.
Once antibiotics enter the ecosystems, they
can be treated as an ecological factor, driving
the evolution of the community structure [6,
7]. Accordingly, the change of community
structure influences the ecological function of
soil and water ecosystems such as biomass pro-
duction and nutrient transformation. Indirect
effects from the antibiotic disturbance to the
micro-ecosystem are largely unknown, and it
is expected that such disturbance might have
significant and long-term effects on the rate
and stability of ecosystem functioning [8—10].
In the environment, enrofloxacin can undergo
degradations by different processes including
photolysis, biodegradation and oxidation by
mineral oxides but it is not sensitive to hydro-
lysis. Despite these degradation mechanisms,
environmental half life time of enrofloxacin
is very long. This long environmental persis-
tence of enrofloxacin can affect the growing
of plant and the activity of the soil microbial
communities. As final products of metabolism,
enrofloxacin and its metabolite ciprofloxac-
in end up in excrement [11, 12]. Livestock
manure is commonly used as organic ferti-
lizer. One of its uses is on the fields where
food plants are grown. The manure includes
the residue of fluoroquinolones in addition
to other drug residue. Plants can also intake
fluoroquinolones along with minerals. The
intake of drugs in small amounts can lead to
drug resistance in pathogenic microbes and
cause allergies and liver damage. Raw mate-
rials of animal origin are subject to strict state
controls. There are no limits concerning raw
materials of plant origin from agroecosystems.

In the case of raw materials of plant origin,
only pesticide residue, nitrates, heavy metals
are controlled at state level, but not anti-
biotics. One of its uses is on the fields where
food plants are grown. The manure includes
the residue of fluoroquinolones in addition
to other drug residue. Plants can also intake
fluoroquinolones along with minerals. The
intake of drugs in small amounts can lead
to drug resistance in pathogenic microbes
and cause allergies and liver damage. Manure
is often contaminated with veterinary anti-
biotics which enter the soil together with
antibiotic resistant bacteria. However, little
information is available regarding the main
responders of bacterial communities in soil
affected by repeated inputs of antibiotics via
manure [13—15] (Cavigelli, M. A., & Robert-
son, G.P, 2000; Hammesfahr U., Heuer H.,
Manzke B., Smalla K., Thiele-Bruhn S.,
2008; Heuer H., Smalla K., 2007; Heuer H.,
Schmitt H., Smalla K., 2011; Torsvik 2002).
Nevertheless, some investigators have com-
mented that antibiotic resistance transfer via
vegetables represents a risk to human health.
The aim of this work has been to evaluate
enrofloxacin effect on soil microbiome and
uptake in crop plants by a multiple conce-
ntration test, controlling after fixed times
(90 days) the effects of different concentra-
tions.

MATERIALS AND METHODS OF RESEARCH

A feature of this work was the study of
the sorption of enrofloxacin by crop plants.
For this, we used the following plants as test
objects: Lactuca sativa var. crispa, Anethum
graveolens, Thymus serpillum, Mentha pipe-
rita, and Calendula of ficinalis. Based on the
literature data, we selected three model con-
centrations of enrofloxacin for our studies:
1000 mg-kg™'; 100 mg-kg™!; 10 mg-kg™! in
model agroecosystems. Studies were con-
ducted in vivo and in vitro. Spiked soil was
placed into nonporous plastic plant pots to
give a total of 60 pots. This gave 3 replicates
per compound with different concentration
for assessing uptake by crop plants plus cont-
rol. Each pot received 20 seeds. The plants
were grown under controlled conditions in
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phyto-chamber: light intensity, 10000 Ix
with a 16/8 h light/dark cycle; humidity,
70%; and temperature, 20°C during the light
cycle and 15°C during the dark cycle. Plants
were grown for 90 days. After this time,
samples of plant material were removed from
each pot, weighed, and placed in glass jars
prior to analysis. The amount of enrofloxacin
was determined in triplicate on each sample
by High Performance Liquid Chromatogra-
phy (HPLC). Enrofloxacin in plants was ex-
tracted according to the method of Palmada
et al. [18]: 250 mg plants (dry weight) were
extracted in 10 ml acetonitrile containing
1% acetic acid, then homogenized, sonicated
(50), vortexed (10 ) and centrifuged (100 )
at 3000 g. The supernatant was then collect-
ed and dried by nitrogen stream. The residue
was suspended in 5 ml phosphate buffer pH
7.4, defatted by a double liquid—liquid parti-
tion with 3 + 3 ml N-hexane followed by a
double liquid—liquid partition with 3 + 3 ml
chloroform. The organic phases were pooled
and dried by nitrogen stream. The residue
was suspended in mobile phase and 50 pl
were injected into the HPLC. Microbiologi-
cal analyses were conducted following the
standard protocol [19]. Soil samples were
analyzed within 24 hours. Microbiological
study of soil was performed in sterile condi-
tions. The method of serial dilution was used
to obtain the suspension where microorga-
nisms titres were 107°~107> CFU/ml. 100 ul
of the soil suspension was evenly distributed
on the surface of the medium with a sterile
spatula. For the study we used the follow-
ing media: Endos agar, Meat peptone agar,
Strepto agar and Entero agar, Agar-Agar, Es-
hbi agar, Soil agar, Chapek agar, Starch agar
in 4 repetitions. Petri dishes with studied
material were incubated in the thermostat
at 37°C for 48 hours in aerobic conditions.
All isolated microorganisms were identi-
fied by applying of appropriate biochemical
test-systems LACHEMA according to the
instructions. Antibiotic resistance of the
identified microorganisms was analysed by
Kirby-Bauer method with the aim to find
antibiotic resistant strains of pathogenic
microorganisms. All isolates from the soil

were examined for resistance to 12 antibio-
tics of the main pharmacological groups:
TE30 Tetracycline; VA30 Vancomycin; L10
Lincomycin; CXM30 Cefuroxime; AMP10
Ampicillin; CIP5 Ciprofloxacin; GEN10 Gen-
tamicin; DO30 Doxycycline; AK30 Amikacin;
AMX10 Amoxicillin; E15 Erythromycin;
OL15 Oleandomycin. Anaerobic microbiota
was additionally tested to Metronidazole
MTS5; Rifampicin RIF5; Clindamycin CD2.
Results were expressed as means (+) standard
deviation (SD) and (SSD05) smallest signifi-
cant differences of experiments conducted in
quadruplicating. Data were evaluated using
the software Statistica 10.0.

RESULTS AND DISCUSSION

Veterinary and human medicines are in-
creasingly being monitored in slurry, soils,
surface waters, and groundwaters. Concerns
have therefore been raised over the impacts
of environmental exposure routes on human
and environmental health [20]. In this study
the potential for medicines to enter the food
chain via uptake from soil into food plants
was explored. The results demonstrate that
following application of enrofloxacin to
plants at environmentally realistic concen-
trations, selected substances are taken up at
detectable levels. Table 1 shows the results
of the accumulation of enrofloxacin by such
plants as Lactuca sativa var. crispa, Anethum
graveolens, Thymus serpillum, Mentha piperi-
ta, Calendula officinalis.

The most actively enrofloxacin was ab-
sorbed from the soil by Lactuca sativa var.
crispa, and Calendula officinalis. When enro-
floxacin was applied to the soil at concentra-
tion of 1000 mg-kg ! its concentration was
60.71 mg-kg ! in lettuce’s phytomass and
49.03 mg-kg ! in calendula one.

The lowest content of enrofloxacin was
found in Mentha piperita with all three ex-
perimental concentrations of antibiotic in
the soil. Experimental studies have shown
that Anethum graveolens and Thymus serpil-
lum absorb antibiotic at the same level. At
an experimental concentration of 10 mg-kg ™!
of antibiotic, its content after cultivation of
90 days was 0.34 mg-kg !in Anethum graveo-
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Table 1
Accumulation antibiotic by plants
Concentration Contain of antibiotics in plants after 90 days of experiment

of ?nnt,lll{) IQPC’ Anethum Thymus Lactuca Mentha Calendula
graveolens serpillum sativa piperita officinalis

1 10 0.34+0.06 0.33+0.02 0.50+0.07 0.22+0.08 0.48+0.07
100 2.53+0.43 3.02+0.33 6.42+0.54 1.56+0.27 5.08+0.51

3 1000 24.80+1.20 24.23+0.91 60.71£1.03 18.41+1.14 49.03%1.09

lens, and 0.33 mg-kg ' in Thymus serpillum, at
a concentration of enrofloxacin 1000 mg-kg ™
its content in plants was significantly greater
and was 24.80 and 24.23 mg-kg .

The results of the studies showed that
there is a species differentiation of cultivated
plants according to activity of absorbing the
antibiotic from the soil. The most actively
the antibiotic is absorbed by lettuce and
calendula, and less actively by mint. Anti-
biotic effects on ecosystems are related to
its concentration, bioavailability, exposure
time and the addition of substrates. When
antibiotics get into the arable land, they
could possibly impact vegetation growth and
development as well as soil microbial activi-
ty. The class of fluoroquinolone antibiotics
have been intensively used for treatment of
bacterial infections in veterinary medicine.

The effects of enrofloxacin on the func-
tion and structure of soil microbial commu-
nities were evaluated (Table 2).

It should be noted, the soil with a high
concentration of antibiotic 1000 mg-kg ™! was
characterized by a low content of nitrogen-
fixing microorganisms and a high number of
oligotrophic and sporeforming microbiota.

Among AR microorganisms there were
such anaerobic bacteria as Clostridium diffi-
cile, Clostridium perfringens and such aerobic
bacteria as Enterococcus faecalis, Yersinia
enterocolitica, Enterobacter cloacae. Other
dominant bacteria were characterized by
a high or moderate level of antibiotic resis-
tance. From the soil bacteria resistant to all
tested antibiotics were isolated. They were
such representatives of aerobic microbiota
as Bacillus licheniformis, Serratia fonticola,

Hafnia alvei, Bacillus cereus, Pantoea ag-
glomerans, Bacillus megaterium and one of
anaerobic bacteria — Clostridium difficile.

In natural conditions, from the soil of
model ecosystems mostly bacteria of the
genus Bacillus were isolated. All of them are
antibiotic resistant and are the causative
agents of foodborne infections and pose a
threat not only to environment but also to
human health.

The presence of enrofloxacin in the soil,
especially in high concentrations, causes
negative changes in the microbial commu-
nity, significant increasing number of anti-
biotic-resistant bacteria loses stability and
integrity of soil microbiome.

Contamination by antibiotics is one of
the important factors in the formation of soil
resistome. One of the important indicators
of the ecological and sanitary state of the
soil and the whole ecosystem is the presence
of conditionally pathogenic and pathogenic
microorganisms.

Particularly dangerous are the antibiotic-
resistant microorganisms, which, together
with the bioproduction, can enter to the hu-
man and animal organisms from the terres-
trial ecosystems. The structure of microbial
communities of the soil is interrelated with
the presence of antibiotic-resistant patho-
genic microorganisms.

In the soil of agroecosystems where the
number of pedotrophes and oligotrophes was
higher, a greater number of antibiotic-resist-
ant microorganisms were isolated. Clostridi-
um perfringens (resistant to tetracycline,
rifampicin, amoxicillin, moderately sensitive
to vancomycin), Clostridium oedematiens
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Table 2
Microbial community composition (CFU/gr.d.s.) in soils of agroecosystems contaminated by antibiotic
S 0“5 SR
2] > = ) 22 =2 £33
5 Tl F| L | T | ZE2 | oz | 2o | 2% |s2|ge] s
2 14 - ] o= B 55 == - - -
S z £z ¢ S| PEs | 2R | 22| Se| sl 2z B
z Z |38l 2| E | 222 | 28 ¢ £% | 25| 55| 85
|25 2| 5| Ef 82| 2200|557
=
1 | Mentha 407 [ 388 | 11 | 7.21 4.32 3520 | 19.22 | 3.77 | 2.63 | 4.56 | 3.68
piperita
2 | Calendula | 8.30 | 1.88 | 20 | 10.33 3.64 41.22 | 2856 | 596 | 1.61 217 | 1.88
officinalis
3 | Thymus 5.46 | 445 | 15 | 14.11 3.22 50.22 | 22.34 | 822 | 287|327 | 3.52
Serpillum
4 | Anethum | 793 | 1.74 | 28 | 21.22 3.14 94.68 | 38.23 | 11.35 | 1.24 | 1.68 | 2.26
graveolens
5 | Lactuca 8.66 | 223 | 25 | 12.38 218 73.82 1 29.67 | 9.23 | 1.70 | 2.95 | 2.96
sativa var.
crispa
SSDy; 0.48 | 0.23 | 0.36 | 0.37 0.32 021 | 1.12 | 1.34 | 041 [ 0.55| 0.18

(moderately susceptible to amoxicillin and
vancomycin), Clostridium difficile (sensi-
tive to metronidazole). Nevertheless, the
enrichments of Clostridium in soil which was
continually treated with manure containing
can be dangerous for public health [21-23].
The enrichment of these bacteria, which are
phylogenetically closely related to human
pathogens, may improve the chance of trans-
ferring antibiotic resistance genes to human
pathogens, since horizontal gene transfer is
more prevalent between closely related or-
ganisms than between distantly related ones
[24-26]. Selective pressures associated with
antibiotic pollution can act on the overall
microbial community composition by redu-
cing taxa diversity or by shifting microbial
composition. Generally speaking, antibi-
otic exposure tends to favour an increase in
Gram-negative bacteria as opposed to Gram-
positive bacteria. Presence of antibiotics in
soil was found to alter microbial community
structure, leading to a loss of biomass and
a reduction in microbial activity including
nitrification, denitrification, and respira-

tion [27, 28]. Moreover, antibiotics can also
affect bacterial enzyme activity, including
dehydrogenases, phosphatases, and ureases,
which are considered important indicators
of soil activity [29]. The different terrestrial
toxicological effects of enrofloxacin were
observed through using a series of bioassays
and including sorption of fluoroquinolone
antibiotic by five crop plants.

Enrofloxacin is highly resistant, its bio-
degradation process is longer than other
antibiotics, it is actively absorbed by the
plants, and therefore it is necessary to con-
trol its content in phytoproducts.

CONCLUSION

The use of fluoroquinoline antibiotic in
the farm leads to its accumulation in the
soil, which is due of its long biodegradation.
Experimental studies In vivo and In vitro
have shown that the absorption activity of
an antibiotic depends on its concentration in
the soil and the species of agricultural plants.
The most actively enrofloxacin is absorbed
by Lactuca sativa and Calendula of ficinalis.
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The smallest content of enrofloxacin was
in Mentha piperita among five crop plants.
The presence of enrofloxacin in the soil, es-
pecially in high concentrations, causes nega-
tive changes in the microbial community,
significantly increasing number of antibi-
otic-resistant bacteria loses stability and
integrity of soil microbiome. Thirty seven
antibiotic resistant bacterial isolates were
cultured from soil. All isolates were multi-

drug resistant, of which greater than 64%
were resistant to 12 antibiotics, comprising
almost all classes of antibiotic. Contamina-
tion of agroecosystems by antibiotics plays a
key role in formation of soil resistome.
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