АГРОЕКОЛОГІЧНИЙ МОНІТОРИНГ

УДК 631.445.12

ЛАНДШАФТНО-ГЕОХИМИЧЕСКОЕ СОСТОЯНИЕ ВЫРАБОТАННЫХ ТОРФЯНЫХ МЕСТОРОЖДЕНИЙ БЕЛОРУССКОГО ПОЛЕСЬЯ, ИХ ОПТИМИЗАЦИЯ И РАЦИОНАЛЬНОЕ ИСПОЛЬЗОВАНИЕ

Н.К. Чертко, А.А. Карпиченко, П.В. Жумарь

Білоруський державний університет

Досліджено вироблені торфовища в межах Поліської провінції озерно-алювіальних, алювіально-терасованих та озерно-болотних ландшафтів з хвойними, широколистяно-хвойними і дубовими лісами на дерново-підзолистих і дернових, здебільшого заболочених ґрунтах, з частим включенням торфоболотних ґрунтів. Встановлено, що торф підстеляється пересічно піщано-супіщаними породами з переважанням неглибоких і середньо глибоких покладів торфу. За результатами проведених досліджень розроблено рекомендації з геохімічної оптимізації вироблених торфових ділянок. Наведено оцінку вмісту деяких хімічних елементів (Ті, Мп, Си, Сг, Nі, Sn, Рb) у залишковому торфі родовищ порівняно з фоном. Для кожного об'єкта дослідження наведено характеристику торфу, визначено геохімічний індекс, що включає коефіцієнт концентрації.

Ключові слова: ландшафти, вироблені торфовища, геохімічний індекс, оцінка, оптимізація, використання.

Добыча торфа в Беларуси привела к образованию многочисленных торфяных выработок, заполняемых водой или заросших сорными травами и кустарниками, которые не способствуют созданию эстетических ландшафтов и не используются по назначению. Единичные выработки преобразованы в пашни, преимущественно с травопольной системой земледелия. Площадь нарушенных болот при добыче торфа на различные цели в Беларуси составляет около 320 тыс. га, из них выработано около 209,5, разрабатываются месторождения на площади 109 тыс. га. В перспективе ожидается рост площадей нарушенных месторождений. Целью исследования была разработка рекомендаций по преобразованию неиспользуемых торфяных выработок в культурные ландшафты различного назначения в зависимости от их сложившейся природной

структуры, ландшафтного соседства, гидрогеологических и геохимических особенностей для создания природного равновесия при высоком ландшафтном разнообразии и, по возможности, высокой социальноэкономической эффективности.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕЛОВАНИЙ

Работы проводились в пределах Белорусского Полесья (Брестская и Гомельская область). Всего исследовано 11 торфяных выработок, название которых соответствует названию бывших месторождений. Более детально характеристика объектов и методика исследования опубликована в [1–4].

Для реализации поставленной цели решались следующие задачи:

• выявить наиболее проблемные, с точки зрения использования, выработанные торфяные месторождения в границах Полесской провинции;

[©] Н.К. Чертко, А.А. Карпиченко, П.В. Жумарь, 2017

- оценить ландшафтно-геохимическое состояние выработанных торфяников;
- разработать рекомендации по использованию и оптимизации выработанных торфяников с учетом сложившейся ландшафтно-геохимической ситуации.

Все объекты исследования размещены в границах Полесской провинции озерноаллювиальных, аллювиально-террасированных и озерно-болотных ландшафтов с хвойными, широколиственно-хвойными и дубовыми лесами на дерново-подзолистых и дерновых, часто заболоченных почвах, с обширным включением местами торфяноболотных почв. Торф подстилается преимущественно песчано-супесчаными породами. Преобладают мало- и среднемощные торфяные залежи.

По результатам дешифрирования космического снимка составлены схемы элементарных техногенных ландшафтов месторождений. С их помощью была оценена территориальная структура и ландшафтное соседство исследуемых торфяных участков в пределах месторождений. Эти материалы послужили основой для разработки рекомендаций по оптимизации и использованию торфяных выработок. Содержание химических элементов определялось эмиссионным спектральным методом.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Приводим характеристику исследованных торфяных выработок.

Гатиа-Осовское месторождение (выработанный торфяной участок «Сычево») расположено на границе Жабинковского и Кобринского районов. Площадь в границах нулевой залежи составляет 1093 га. Остаточный торф на выработанных участках, преимущественно, серо-коричневого цвета сильной степени разложения (45–55%). Ботанический состав — сфагново-осоковый.

Геохимический индекс месторождения выглядит следующим образом (в скобках здесь и далее указан коэффициент, полученный путем деления содержания химического элемента в остаточном торфе на фоновое содержание этого элемента в пределах Полесья):

$$\frac{Pb(2,1),Sn(1,9),Ni(1,6)}{Cu,Mn(0,9),Cr(0,7),Ti(0,6)}.$$

Из геохимического индекса видно, что в золе торфа выше фона является содержание Pb, Sn, Ni, близко к фону — Cu, Mn, несколько ниже фона — Cr и Ti.

Рекомендации по оптимизации выработанного торфяника могут быть следующие: в среднем по месторождению имеет место превышение фона по Pb ($K_k = 2,1$), Sn ($K_k = 1,9$), Ni ($K_k = 1,6$), поэтому не рекомендуется использование данных земель под сельскохозяйственное производство. По завершении добычи торфа целесообразно разработать технико-экономическое обоснование на добычу карбонатного сапропеля на территории торфоучастка «Сычево». После завершения всех добычных работ, выработанные площади желательно использовать под водоем или под прудовое хозяйство.

Месторождение «Ель» расположено в центральной части Кобринского района. Оно занимает площадь 440 га, располагается в древней ложбине стока и представляет собой вытянутое в меридиональном направлении тело. В настоящее время добыча торфа осуществляется только в южной части месторождения.

Особенностью остаточной мощности залежи является ее неравномерность, которая колеблется от 0,1 до 1,5 м. Сложена торфом, оттенки которого изменяются от темно-серого, почти черного, до красновато-бурого. По ботаническому составу торф, преимущественно, камышово-тростниковый, местами тростниково-древесный. Степень разложения варьирует от слабой (20–25%) до весьма сильной (более 55%). Подстилающие породы представлены водно-ледниковым тонкозернистым песком палево-серого цвета.

Геохимический индекс месторождения следующий:

$$\frac{Ni(1,6),Mn(1,2)}{Cu,Cr(0,7),Ti(0,6),Pb,Sn(0,5)}.$$

В золе торфа выше фона является содержание Ni и Mn, ниже фона — остальных химических элементов.

Территория торфяного участка «Ель» является дефицитной по всем исследуемым элементам, за исключением Ni и Mn. При использовании в сельскохозяйственном производстве выровненных участков рекомендуемым направлением является луговодство с периодическим подсевом многолетних трав. Кроме стандартных доз удобрений для торфяных почв с луговыми травами, следует регулярно вносить медные микроудобрения. Для выращивания сосны подходят участки с мощностью торфа менее 0,2 м. В местах, систематически затапливаемых водой длительный период, рекомендуется естественное зарастание с использованием биомассы после переработки в качестве топлива.

Торфяной участок «Дворище» расположен в южной части Березовского района и относится к торфяному массиву «Черный Лог — Чайково-Гнилинка». Его площадь составляет 118 га. В настоящее время выработан и используется как рыбохозяйственный водоем. Мощность остаточного торфа превышает 1 м. Торф темно-серого цвета, весьма сильно разложившийся (более 55%). Растительных остатков в нем не обнаружено. На сухих местоположениях торф сильно минерализован.

Геохимический индекс месторождения выглядит следующим образом:

$$\overline{Mn(0,7),Cr,Ti(0,6),Pb,Sn(0,5),Ni(0,4),Cu(0,3)}$$
.

Содержание всех исследуемых элементов находится ниже фона.

Для территории торфяного участка «Дворище» отмечен дефицит Zn ($K_k = 0.25$) и Cu ($K_k = 0.3$) — физиологически значимых химических элементов для живых организмов. Поскольку большая часть участка используется под рыбохозяйственный водоем, то в геохимической оптимизации территория не нуждается.

Торфяной участок «Здитово» расположен в южной части Березовского района и относится к торфяному массиву «Черный Лог — Чайково-Гнилинка». В настоящее время на территории торфяного участка завершаются работы по добыче торфа тем-

но-серого цвета весьма сильно разложившегося (более 55%) и сильноминерализованного. Растительных остатков в нем не обнаружено.

Геохимический индекс месторождения следующий:

$$Ni(1,0) \frac{Sn(2,2)}{Pb,Mn(0,8),Cu(0,6),Cr,Ti(0,4)}$$
.

В золе торфа зафиксировано содержание Sn выше фона, близко к фону — Ni, Pb, Mn, ниже фона — Cu, Cr и Ti.

Из-за повышенной концентрации Sn при использовании в сельском хозяйстве будет целесообразным регулирование водного режима с целью создания окислительных условий, препятствующих подвижности данного элемента Sn, возможно применение микроудобрений, содержащих Mn, Co и Cu, являющихся антагонистами Sn и восполняющими недостаток Mn и Cu в торфе. Исходя из гидрологического режима, наиболее оптимальным представляется использование их под водоем при условии полной выработки торфа или под вторичное заболачивание.

Месторождение «Огдемер» расположено на границе Дрогичинского и Ивановского районов и занимает площадь 130 га. В настоящее время не используется. Добыча в разное время производилась на трех торфяных участках: «Огдемер I», «Огдемер II» и «Огдемер III».

Территория месторождения сложена торфом темно-серого цвета с буроватым оттенком сильной степени разложения (45–55%), по ботаническому составу — камышово-осоковым. Остаточная мощность залежи составляет 95 см. Подстилающие породы представлены водно-ледниковыми связными, полевошпатово-кварцевыми песками охристого цвета, а на отдельных участках — аллювиальными оглеенными, средними суглинками охристого и сизого пвета.

Геохимический индекс месторождения выглядит так:

$$\frac{Mn(1,8),Sn(1,4),Pb(1,3)}{Ni(0,9),Cr(0,7),Cu,Ti(0,5)}$$

В золе торфа содержание Mn, Sn, Pb выше фона, близко к фону — Ni, ниже фона — Cr, Cu, Ti.

Территория торфяных участков пригодна для использования в лесоплантационном хозяйстве, в частности, для выращивания ольхи, ивы. При переустройстве территории под рыбохозяйственный или рекреационный водоем, а также под вторичное заболачивание геохимическая оптимизация не требуется. Для сельскохозяйственного использования территория не пригодна.

Торфяной участок «Лихой Остров» расположен в западной части Лунинецкого района на границе с Пинским. Относится к одноименному торфяному месторождению. Его площадь составляет 106 га. В настоящее время не используется.

Остаточная мощность залежи сохраняется на уровне около 15 см. Торф имеет темно-серый цвет. Степень разложения торфа весьма сильная (более 55%). Растительные остатки плохо различимы, но хорошо просматриваются серовато-белесые корешки осок, что позволяет предположить их доминирование в ботаническом составе. Подстилающие породы представлены связными супесями и легкими суглинками серого цвета.

Геохимический индекс месторождения выглядит следующим образом:

$$\frac{Ti(1,6),Cr(1,2)}{Mn(0,5),Pb,Ni(0,4),Cu,Sn(0,3)}$$

В золе торфа содержание Ті, Сr выше фона, остальных элементов — ниже фона.

Ниже фона также содержание и большинства химических элементов. Дефицитными биологически значимыми элементами являются Mn ($K_k = 0.5$) и Cu ($K_k = 0.3$). Геохимическую оптимизацию проводить не рекомендуется, так как по гидрологическому режиму территории наиболее оптимальными вариантами являются использование выработок под водоем или вторичное заболачивание, или под плантации тростника для технических и энергетических нужд.

Торфяной участок «Грады» расположен в центральной части Ганцевичского райо-

на и находится в границах одноименного месторождения. Представляет собой выработку геометрически правильной формы, вытянутую в широтном направлении и слегка прогнутую на юг. Занимает площадь 250 га. Залежь полностью была осушена закрытым дренажем. В настоящее время добыча торфа не производится.

Остаточная мощность залежи колеблется в пределах 60–110 см. Сложена торфом серовато-коричневого цвета преимущественно светлых оттенков. Ботанический состав, в основном, гипново-осоковый. Степень разложения варьирует от средней (25–35%) до весьма сильной (более 55%). Подстилающие породы представлены гумусированным средним суглинком сероватого цвета.

Геохимический индекс выработки следующий:

$$Mn(1,0)\frac{Cu(1,1)}{Ni,Cr(0,9),Sn(0,8),Pb(0,6),Ti(0,5)}$$
.

Для большинства элементов характерно содержание близкое к фону Cu, Mn, Ni, Cr, ниже фона — Sn, Pb, Ti.

Большинство исследуемых элементов содержатся в количествах, близких к фону (Сu, Mn, Ni, Cr, Sn), поэтому геохимическая оптимизация территории не требуется. Исходя из ландшафтной структуры и ландшафтного соседства, а также гидрологического режима, оптимальным направлением их использования может быть вторичное заболачивание или устройство плантаций тростника для технических и энергетических целей.

Торфяной участок «Корма» расположен в северо-восточной части Октябрьского района на границе со Светлогорским районом. Добыча торфа не производится.

Остаточная залежь сложена торфом темно-серого цвета с коричневатым оттенком. Ее мощность составляет около 1,08 м. Торф по степени разложения относится к весьма сильно разложившемуся (более 55%), ботанический состав — преимущественно осоковый.

Геохимический индекс месторождения выглядит так:

$$Ti(1,0) \frac{Cu(3,0), Mn(2,8), Ni(2,7), Sn(2,6), Cr(1,5)}{Pb(0,6)}$$
.

Для большинства элементов характерно содержание, превышающее фон, близко к фону — содержание Ті, ниже фона — Рb.

В связи со значительным превышением фонового содержания, в 2,6–3 раза, для ряда химических элементов (Sn, Ni, Mn, Cu) не рекомендуется использовать данное месторождение после выработки в сельском хозяйстве. Предлагается на участке провести вторичное заболачивание или лесонасаждение.

Торфяной участок «Дуброва» расположен в северо-восточной части Петриковского района. Представляет собой в плане клинообразную выработку в пойме р. Тремля, вытянутую с юго-запада на северо-восток. Добыча торфа не производится.

Остаточная залежь сложена торфом темно-серого цвета. Ее мощность превышает 1 м. Степень разложения разная и изменяется от сильной (45–50%) до весьма сильной (более 55%). Растительных остатков в торфе практически не наблюдалось, за исключением отдельных корешков осок серовато-белесого цвета. Торф является слабоминерализованным благодаря устойчивому увлажнению.

Геохимический индекс участка характеризуется следующим содержанием:

$$\frac{Ni(3,1),Sn(2,7),Cu(2,4),Mn(1,7),Cr(1,6),Ti(1,4)}{Ph(0,7)}.$$

Для большинства исследуемых элементов отмечено превышение фонового содержания, особенно для Ni ($K_k = 3,1$), Sn ($K_k = 2,7$), Cu ($K_k = 2,4$), что делает нецелесообразным их использование в сельском хозяйстве в связи с необходимостью проведения дорогостоящей нейтрализации избыточных элементов. Наиболее рациональным представляется вторичное заболачивание.

Месторождение «Челющевичи» расположено в Петриковском районе, в северо-восточной его части. Примыкает к восточной окраине одноименной деревни. Его площадь составляет 40 га. Торф в настоящее время не добывается. Остаточная залежь сложена торфом серовато-коричневого цвета. Ее мощность превышает 1,1 м. Степень разложения торфа весьма сильная. Ботанический состав определить не удалось.

Геохимический индекс месторождения следующий:

$$\overline{Cr(0,9),Cu,Mn(0,7),Ni(0,6),Pb,Sn,Ti(0,5)}$$

Содержание всех элементов — ниже ϕ она.

Учитывая низкое содержание химических элементов и неблагоприятные гидрологические и ландшафтные условия, целесообразно провести залужение торфяного участка.

Торфяной участок «Нересня» расположен в западной части Лельчицкого района, в пойме одноименной реки. Занимает площадь 175 га. Добыча торфа в настоящее время не производится.

Остаточная залежь сложена торфом темно-серого цвета с коричневатым оттенком. Ее мощность превышает 0,6 м. Степень разложения торфа весьма сильная (более 55%). Торф сильно минерализован. Ботанический состав не установлен.

Геохимический индекс месторождения выглядит следующим образом:

$$\frac{Ti(2,6),Cr(1,7)}{Cu(0,6),Ni(0,5),Mn,Sn(0,4),Pb(0,3)}.$$

В золе торфа выше фона является содержание Ті, Сг, остальных элементов — ниже фона. Исходя из структуры ландшафтного соседства, возможно использование выработанного торфяника для залужения или лесонасаждения.

выводы

По результатам проведенных исследований разработаны рекомендации по геохимической оптимизации осушенных ландшафтов. Дана оценка содержания некоторых химических элементов (Ті, Мп, Сu, Сr, Ni, Sn, Pb) в остаточном торфе месторождений относительно фона. Для каждого объекта исследования приведена характеристика торфа, геохимический

индекс, включающий оценку содержания химических элементов.

Рекомендации по использованию выработанных торфяных участков следующие:

- добыча сапропеля с последующим созданием прудового хозяйства (Гатча-Осовский);
- использование для залужения выращивания сельскохозяйственных культур,
- преимущественно трав (Ель, Челищевичи, Нересня);
- вторичное заболачивание (Здитово, Грады, Корма, Дуброва, Лихой Остров);
- использование в качестве рыбохозяйственного водоема (Дворище);
- создание лесоплантации ольхи, ивы (Огдемер).

ЛИТЕРАТУРА

- Ландшафтные и гидрогеологические условия выработанных торфяных месторождений Брестского Полесья / Н.К. Чертко, Н.В. Ковальчик, А.А. Карпиченко и др. // Вода, изменение климата и здоровье человека: материалы Междунар. молодежного форума (Минск, 25–26 ноября 2009 г.) / редкол.: Т.А. Савицкая [и др.]. — Минск: А.Н. Вараксин, 2010. — С. 247–253.
- 2. Чертко Н.К. Ландшафтно-геохимическая паспортизация и оптимизация выработанных торфяных месторождений / Н.К. Чертко, П.В. Жумарь, А.А. Карпиченко // Природопользование: экология, экономика, технологии: материалы Междунар. научн. конф. (Минск, 6–8 октября 2010 г.) / Нац. акад. наук Беларуси [и др.]; редкол.: В.С. Хомич (отв. ред.) [и др.]. Минск: Минсктиппроект, 2010. С. 326–329.
- 3. *Чертко Н.К.* Ландшафтно-геохимическая оценка торфогрунтов выработанных торфяных месторождений Белорусского Полесья / Н.К. Чертко, П.В. Жумарь, А.А. Карпиченко // Ґрунтознавство. 2010. Т. 11. № 3–4 (17). С. 27–41.
- Чертко Н.К. Использование выработанных торфяников Белорусского Полесья / Н.К. Чертко, А.А. Карпиченко, П.В. Жумарь // Прыроднае асяроддзе Палесся: асаблівасці і перспектывы развіцця: Зборнік навуковых прац. — 2012. — Вып. 4. — С.77–81.
- Рекомендации по геохимической оптимизации и экологически безопасному использованию осушенных ландшафтов / В.С. Аношко, Н.К. Чертко, А.С. Мееровский и др. — Минск.: Изд. центр БГУ, 2006.— 32 с.

REFERENCES

- Chartko, M.K., Kavalchyk, N.V., Karpichenka, A.A., Zoomar, P.V., Liazhnevich, V.A. (2010). Landshaftnye i gidrogeologicheskie usloviia vyrabotannykh torfianykh mestorozhdenii Brestskogo Polesia [Landscape and hydrogeological conditions of worked-out turf deposits of Brest Polesye]. T.A. Savitskaya (Ed.). Proceedings from Water, climate change and human health '09: Mezhdunarodnyi molodezhnyi forum (25–26 noiabria 2009 goda) – International Youth Forum. (pp. 247–253). Minsk: A.N. Varaksin [in Russian].
- Chartko, M.K., Zoomar, P.V., Karpichenka, A.A. (2010). Landshaftno-geokhimicheskaia pasportizatciia i optimizatciia vyrabotannykh torfianykh mestorozhdenii [Landscape-geochemical certification and optimization of worked-out turf deposits]. V.S. Khomich (Ed.). Proceedings from Nature management: ecology, economics, technology '10: Mezhdunarodnaia nauchnaia konferentsiia (6–8 oktiabria 2010 goda) International Scientific Conference. (pp. 326–329). Minsk: Minsktipproekt [in Russian].
- Chartko, M.K., Zoomar, P.V., Karpichenka, A.A. (2010). Landshaftno-geokhimicheskaia otcenka torfogruntov vyrabotannykh torfianykh mestorozhdenii Belorusskogo Polesia [Landscape and geochemical assessment of turf grounds of worked-out turf deposits of Belarusian Polesye]. Gruntoznavstvo Soil Science, 3–4, 27–41 [in Russian].
- Chartko, M.K., Karpichenka, A.A., Zoomar, P.V. (2012). Ispolzovanie vyrabotannykh torfianikov Belorusskogo Polesia [Use of the worked-out peat bogs of the Belarusian Polesye]. Pryrodnae asiaroddze Palessia: asablivastci i perspektyvy razvitctia Natural Environment of Polesie: Features and Prospects of Development, 4, 77–81 [in Russian].
- Anoshka, V.S., Chartko, M.K., Meerovski, A.S., Zajko, S.M., Vashkevich, L.F., Bachila, S.S. et al. (2006). Rekomendatcii po geokhimicheskoi optimizatcii i ekologicheski bezopasnomu ispolzovaniiu osushennykh landshaftov [Recommendations for optimization of geochemical and environmentally safe use of drained landscapes]. Minsk: Izdatelskii tcentr BGU [in Russian].